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SINGULAR PERTURBATIONS OF ORDINARY DIFFERENTIAL EQUATIONS 

Introduction 

Since so few differential equations can be integrated exactly, 

it is important to develop approximate methods for solving such 

equations.  One important approximation method, and almost the only 

one, is to express the desired solution of a differential equation as 

a modification or perturbation of the solution of a simpler, that is, 

more nearly solvable, equation.  This method is known as the method 

of perturbations and its validity usually depends on the fact that 

the modification in the equation or in the solution is small in some 

sense.  Frequent]^, the smallness of the perturbation depends on the 

size of some parameter in the equation and we may be able to express 

the desired solution as a convergent power series in terms of the 

parameter. 

We shall discuss the perturbation method for ordinary differential 

equations depending upon a small parameter  s,  We begin in Chapter I 

with the regular case, that is, the case where naive methods give the 

desired solution and sometimes even give it as a convergent power series 

in the parameter.  As illustrations of this procedure, we shall obtain 

the Neumann series and the Fredholm expansion for the solution of an 

integral equation.  We shall also indicate how to obtain the solution 

of the eigenvalue problem for an ordinary differential equation as 

a power series in  e . 

, 
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In Chapter II we begin the study of singular perturbation 

problems, that is, problems in which the standard methods fail and 

some special device has to be employed.  We consider differential 
-■:- ■ w^ 

equations   in  which  the  coefficient  of   the highest   derivative  is 

multiplied by  the small parameter    e;   therefore,   in the  limit, as     e 

approaches   zero,   the   order   of  the  differential   equation  is   lowered 

and  we have  too  mäftiy  boundary conditions.     The  question of  whether 

the  limiting, problem' makes   sense  and -if so,   which,   if  any,   of the 

given boundary  conditions   should  be  used  will  be   discussed  in a 

very  general   case-.     It   is   also  shown  that   the  boundary   conditions 

which are   lost   give   rise  to   a  "boundary layer"  effect. 

In  Chapter  III   we  treat  the  relaxation  oscillations  for 

Van  der  Pol's   equation  with   a large  value  of   the  parameter.     The 

problem  is   to   find   the  period  of   the.oscillation   in  terms   of  the 
»...'..■ • 

parameter.      ^e   shall   obtain  two   terras   in the   expansion   for  the 

period. 



Chapter I 

REGULAR PERTURBATIONS 

Iteration and the Neumann Series 

Consider the problem of solving the equation 

(1) Lu - eMu = f 

where  u  is a given function and  L and  M  are given operators. 

We assume that we know how to solve the equation 

Lu = f 

and wish to use the solution of this equation to solve (1).  Suppose 

the inverse operator  L    is known.  Applying it to (1), we get 

(2) u - EKU = g, 

where we have put 

L^M = K,  L-1f = g. 

We solve (2) by an iteration method.  We write it as 

(3) u = g + e Ku 

and then obtain a sequence of approximations  u u ,u ,...  by putting 

(4) u  1=:g+eKu,    n = 0,1,2, . .. 
n+1 n ill 

U0  = s- 

There are now two problems.  First, to show that the sequence u 

converges to a limit and secondly, to show that this limit satisfies (3) 

The usual procedure for investigating the convergence of the 

sequence begins by obtaining an estimate for the difference of 

» 
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successive  approximations.     From   (k)   we  have 

(5) u     ,   - u    = e(Ku     - Ku     n). n+1 n n n-1 

Note that we do not assume that K is a linear operator.  Introduce 

some norm, that is, a measure for the closeness of two functions v 

and  w and let us denote it by the symbol ||v - w|| . For example, 

one possibility is to take 

||v - w|| = max|v(x) - w(x)| 

for x in some interval of interest.  Put 

(6) Pn+1= K+l-^JI- 

We  suppose   that   the   operator     K     is  such that 

(7) ||Ku     -  KU     Jl    <   C||u     -  u     n ||   =  Cp 
n    n-1  —    n   n-1      n. 

Then, because of (5) 

P -, < Cp < C2p   < • • • < cnpn, ^n+1 —  n —   n-1 —    -  rl 

Using this estimate, we aee that the infinite series 

(8) u  + (u1 - u0) + (u - u ) + ••• 

is majorized by the series 

"Uo" + Pl + P2 + ' "' 

or by 
CD 

HuJI + Pl 2 C
n. 

0 

This series converges if  (C) < 1  and therefore (8) also converges. 

But the n    partial sum of (8) is  u : therefore, the sequence  u 
^ n ' n 

converges to a limit. 

The proof that this limit satisfies equation (3) depends upon 

the operator  K  having some kind of continuity. 
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We shall not discuss this question further. 

As an illustration of the method, we consider the problem of 

finding a solution of the non-linear ordinary differential equation 

' 

: ■ 

(9) y' = f(x,y) 

with y(0) = y .  Note that we have omitted the parameter E  because 

it is not needed for convergence of the iteration method.  Inverting 

(9) , we get 

y = y0 + i fC?,y(?)]d?,. 
0 

Just as in (^f), we set up an iteration procedure.  We put y,-/*) = y^ 

and 

(10) 

For a norm we use 

^+1
(X) y  + j f[£,y (C)3d^. 

u  n     n 

P  n (x) n+1 lyn+l  ynl ly
n+l

(x) - yn(x)|- 

To prove the sequence  y (x)  converges, we need some condition on 

f(x,y).  We assume that 

Qf(x.y) 
ay 

< c 

for all  y  and  0 < x < a.  Then 

fC^,yn(03 - fCf,yn_1(^)] 

(ID 

yn(V 
5 af^) 
yn-l^> ^ 

yn(^ , 
5 cdJ 
yn-l(^ ! 

< c|yn(0 - y^iOl = Cpn(5). 
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«2* f?«'' ***»'  From (10), we have 

ht^y^ yn+l(x) " yn(x) = ^  f^,yn(?)]| - fC?1yn_1(?:)] d?  .' 
-• . • - u 

|^!l^&-;Sfe>sA'Ävfaii.ä-.msing. (11) we get 
; ^^••%'-^^^-#. :.^.-.--"•''* •. "   x 
l^m: '^frJllB)  ••.-■ rp' ,(x) < C J pi(?)d?. 

..- • •. ;- " .• The proof of convergence can be completed as before if we can 
Lvv--. ■.;:r .■;■;•.•; ••/, -•-;.,._ 
j. •'.   '•       "*''.    -obtain  an estimate  for    p   (x)     such  that  the series 
:■-...   ♦     •"      •'•",-    ■■ n 

'' ■ .■■     "•'.•.      "    %   "'    , 

, ,   •. ' -• ■•;;(& 

•■ ? p (x) 
"■:■'■  '•. . .      . ' ' i ■ n 

%   converges.  We shall show later how such an estimate can be derived 

"   from a more general integral inequality than (12). 

Let us consider another illustration of the iteration procedure. 

The problem is to find a solution x(t)  of 

•  x + x = f(x,x,t) 

•  ■  such that x(0) = A and x'(0) = 0.  Here we may consider Lx as x + x 

m
M  aucf Mx = f(x,x,t).  The inverse operator to L is easily found and we 

obtain 

t 
x = Acost + j f [X(T) ,X(T) ,T]sin(t - T)dT . 

0       ' • 

We set up the customary iteration as follows: 

x = A cos t 

t 
x , = Acost + j f[x (T),X (T),T]sin(t - T)dT . 

• . '.     n+1 Q   n   ' n   ' 

But now, we see that the estimate for x n(t) - x (t) will depend 
n+1      n 

also on an estimate for x (TI - x -(T). 
n      n-1 

I 

, - 



The simplest way to avoid estimating the derivatives is to 
o 

reformulate the problem in terms of the following system of two 
o 

o 
first-order differential equations; 

x = v 

v = - x + f(x,v,t) 

with the conditions  x(0) = A, v(0) = 0.  It is easy to obtain the 

following iteration procedure: 

(13) 

x ,(t) = Acost +  5 fCx (T), v (T),T]sin(t - T)dT 
n+1 _    n   '  n 

v  n(t) = - Asint +  j f[x (T), v ('t),T]cos(t - T)dT 
n+1 n   n     n 

with  x0(t) = A, v (t) = 0,  We use as a norm 

p At)  =  max||x  -.(t) - x (t)|, |v n(t) - v (t)|| . 
n+1 I  n+1      n    '   n+1      n   J 

Again, a condition on the derivatives     8 

is needed.  If m(T)  is a bound for the sum of the absolute values 

of these derivatives, we can obtain from (13) the inequality 

(Ik) p      At)   <     j m(T)p (T)dT 
n+1    —        n 

If this inequality were an equality, and  Pn(t)  equalled a constant 

b ,  we would find that 

(^ M(t)\ pn(t) = -irrbo 
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where 
t 

M(t) = 5 m(T)dT . 
0 

This suggests putting in ilk) 

p (t) =  Mtl., (t) 
n        nl  n 

After this substitution, (14) becomes 

M(t)   ,   ,,,  .    c  M(T) , , , n 

(n + 1)1 n+1    -    ^    nl  n 

Put  B = max b (t)  for  0 < t < a.  Then this inequality implies that 

M(t)     ,b     rtXB    5   ^-dT  =-  ^-^ 
(n + 1)1 n+1   -n      n1       n (n + 1)I 

or 

b  .(t) < B 
n+1   — n 

for 0 < t < a;  consequently,  B  , < B <B  n<-"<Bn.  This shows -  — '   n+1 - n - n-1 —    —  1 

that the sequence of  B  is bounded and then 
n 

(15) P (t) < B, ^ . 
n   —  1   nl 

Note that a similar result can be obtained for (12).  We have 

m(t) = C,  M(t) = Ct  and 

r^ <  p (Gt)n 
p (t) < B  :  
n   -  1  nl « 

Using the estimate given in (15), we find that ^ 

JpCtXB*^, 
.,  n   — 1     ' 

a convergent result, which shows that the iteration procedure defined 

in (Ijj) converges to a limit. 



The iteration method leads to an important result if the operator 

K  in (4) is linear.  In such a case :.i::.'''-',#?• ®.V '::'''"*''':i:w^'/'Vi''-■.■■■'■■''/':<:r-'   . 
•-                   :■  .    '                                   ■ :-:^:: yy-.v: , ; ■.- ■.■•■■ . Jr--.s^'v.'» <sr, *• v*^,v <•- .^ftr^S^'^'^'■"■■■■■••'■ ■' '          " "■ :^ ■■        ■■ "■ 

%                          ,   .• ■   ■'■   ■■■■.-■v.-'l ■.•■;■■•,-.■'.!; • i .:ii-^"';:'4-^-Xi'^«-!-v •;•■■ ••...,..              "''"'r^,'-'''.. ■        '.'      :'■■..''"'"';■ 
,•   •..                               ,:■"''■-:v>:4-,-: ■,i,:.-..-.---.■*.■.--"■ :-/••' •• •••■-»■.v s-i"S*"«i   i''"'-"'- 

:;..,. , •■^-; :"■ ■■^■.Ä^ '.. .  . 

• •     n+1  &     n  B n-1 . ,, -. 
■ •.. .;'.'.'.-. '•.■,/; :'■' • •'Vr'''---:':^-""-:^::    ■■■■^'■^ ■■■_ ..■••■ 

•   ■•■.'.. ^ '<■:■.".'■ 7 '    •   .•■' v>'. Vv.7w ■"".•!'-°iÄ%,l#" . #-"s-''--  ■■;.■• .;;;'v ■ • ■' 
= g + eKg +;e K u ^^■•^^^g^Vekg^ei-.K./g,+-^t'e^g. 

We thus obtain the formal -Neumann' series.:,;-.; '}■■-.•■,',". :'-.:' .•;■■'■"-^" ■■•.'-•'■••'' ■'. "' ■"■''•'•-: 

■.■'' '. '-^ ^ a^■^^.U'■■■■'■'v'^^'^'Ow^yf-—" .■ ' ' „'. .  ' ." 
(16)     u = g + J'i:(£K)ng...^-:r'^ :. ' v" 

'    ■      1 T't        .^'-•'l.',.'}' f,. •  • • . ' » 

The  series   will-converge'if ■.the);operator:-. ■e.K;.':.is:'.'Smalln • A . 

sufficient  condition for .convergence  is ■•that'the'eigenvalue  of'   eK 

with smallest   absolute ■: value, have." magnitude/;:less .than  one, . •   ■    ■  '      . • '. . 

It   should be  noted  that .the;:-'infinite  series   (16)   (fould  also be    _• . ' 

obtained  by  assuming ■U: ■■'has.a  series   expansion  in powers   of    s.     such as 

''■■■■' .'..-■'CD  ■...■•■' '      ■ -. ..  •      '  '  ., 
■■■■■.'  v  n '      '   ' •      .■•'■.. U = V„ + >-  E  V   ■.   .  ■   .       . ■ • 

■. 0.. • -. ■  n '  . • • : ' . 

substituting ' this in Of.) and equating the coefficients of corresponding 

powers of £  on each side of the resulting equation. 

Fredholm Expansion   . ■'..'■ 

The Neumann series given in (16) converges in general only for 

sufficiently small values of e .  Frodholm showed how to obtain an 

expansion for the solution of (4) which is valid for all values of e 

for which the solution to (k)   exists.  Of course, the operator K 

must be assumed linear.  We shall obtain this expansion in a formal 

manner and ignore the im^ ortant question of proving the convergence 

of the expansion. 



The solution of (4) may be written as 

(17) u = (I - eK) 1g 

where  I  is the identity operator.  If we consider the case where K 

is a finite-dimensional matrix, the solution (17) breaks down when 

the determinant of I - eK  is zero.  Put 

D(e) = det(I - eK). 

We shall state later the meaning of the determinant of a non-matrix 

operator. 

(18) 

Rewrite (17) as follow 

eD(K,e) 
I + D(e) 

where 

eD(K,c) 
I + 

This implies 

D(e) (I - eK)"1. 

(19)      D(K,e) = pi^ 
EK 

If K  is a finite-dimensional matrix, the formula (19) suggests that 

D(K,e)  would be regular for all values of e  because the singularities 

of  (I - eK)    occur at the zeros of  D(£)  and would be cancelled 

by the factor  D(e)  in the numerator.  It seems reasonable to expect, 

therefore, that both  D(K,e)  and  D(e)  would have expansions in 

powers of e  which would converge for all values of e. 

Before we obtain these expansions, we wish to define the determinant 

of a general operator.  If e  is small enough, we may define 

log(I - eK)  by the power series 

t 



If  I - eK is a matrix with eigenvalues  X,.X_,*»«A ,  then 12'        '  m 

m 
det(I -   eK)  = K'Krmm'*K =  exp( ^   logX ). 

But     log(I'-   eK)     has  the   eigenvalues     logX,,•••,logX       and 

m 
trace  log(l   -  eK)   =  X log\   ; 

•   1 y 

therefore,   for  a matrix we   obtain the   formula 

(20) det(I  - eK)   =  exp[tr  log(I  - eK)], 

i' 

where  tr  stands for trace, 

Formula (20) can be used to define the determinant of  (I - eK) 

for general operators  K  if the trace of these operators can be 

defined.  We shall define, trace only for integral operators.  Suppose 

(21)      Kg = 5 k(x,y)g(y)dy 
a 

then 

(22) tr K = j  k(y,y)dy, 

Suppose 

CD /_vn 
(23)     ^)=2^-cne

n 

and 

(2^) 
CD (NH 

D(K,e)' = 2 ^—-B e11 

where  c   are constants and B   are operators.  Using (20), we find 

that 

(25) 
CD ,      ,n CD   n 

log  D(e)   =   tr[log(I  -  eK)]   =  -tr Z   U^;     = - S —-k 
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where 

(26) 

(^) 

k = tr Kn. 
n 

Differentiating (25), we get 

D(e) _ ■ J e  ■ n    tr I - eK ' 

CD  , ,n 

0 
(n - 1)1  ne 

CD 

(2 8n k )D(e). 
1     n • 

Multiplying the two series on the right-hand side and equating coefficients 

of corresponding powers of  e, we get a set of linear equations from ■' 

which  c   could be determined.  Soon, we shall obtain a more useful ■ 
n ' 

formula for  c . 

From (19) we have 

D(K,e) - sKD(K,e) = KD(e). 

Substituting the series (23) and (24) in this equation and comparing 

the coefficients of corresponding powers of e, we get 

(28)      B + nKB  _, = c K 
n     n-1   n 

for  n = 0,1,2,   Note that from (23),  c  = 1, B  = K. 

Again use (19) and take the trace of both sides.  We find 

tr D(K,e ) = D(e ) tr 
K 

- D'Ce) 
I - eK 

by the use of (27).  Comparing corresponding powers of e , we obtain 

the promised formula for  c , namely, 
n 

(29) c  = tr B  n . 
n      n-1 
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Formulas (28) and (29) enable us to determine c  and B  by 
n. n 

succession.     We   find 

C0.=  !'   B0  =  K 

(30) cl = kl'  Bl klK-K 

c2   =  k^  - k2,   B2  =   (k^   - k2)K  - 2KBa, 

etc.     This   is  as   far  as   we  can go   in  the  general   case. However,   if 

we  assume   that•   K     is   an  integral   operator,   as   Fredholm did,   we   can 

give   some. eleerant  determinantal-representations   for    B       and     c   . 
■•*•..,   •••;■'   • ■       ■    n      n 

We .assume   .    .        '• ' 

■.Kg = j". K(x,y)g(y.)dy 
a . . 

where  K(x,y) ' is called the kernel- of the-integral operator  K. 

If B (x.y)  is the kernel for B ,  then (28) becomes 
, n- ''   .     • n' 

*       ',,■-' ® 

.-.■••      '   b 

(31) •'  B (x,y) + nj K(x,z)B • (z,y.)dz = c K(x,y), 
n   •..    J '   n-1 n      ' 

•     .      a   . 

and .(29) becomes 

'.••":' b 
(32) cn = y  Bn_i(y,y)dy . 

a     '  • 

With these notations, the formulas (30) may be written as follows; 

\(t0,t2) = j  dt' 
K(t0,t2)    K(t0,ti) 

K(t1,t2)    K(t1,t1) 
,  c1 = j  K(t1,t1)dt, 
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VW 
b b 

i  5 dt, dt 
a a 

1 2 

K(t0,t3) KCtQ,^) 

K(t1,t5) OKC^,^) 

K(t2,t3)  KC^,^) 

K(t01t2) 

K(t2,t2) 

J t2B1(t2,t2). 

It is clear what the general form of B (t_,t n)  and  c  should D n 0 n+1  •     n 

be.  By mathematical induction using (31) and (52), it is not difficult 

to prove the formulas correct.  We leave the details to the reader. 

Perturbation of Eigenvalues 

Consider the problem of finding the eigenvalues of the linear 

operator L + eM if the eigenvalues and eigenfunctions of L are 

known. The problem is to find values of X ' for which there exist 

non-zero solutions of 

(33,)     (L + eM)u = Xu. 

Here both L  and  M  are linear operators and" we assume  L  is 

self-adjoint. 

Suppose  u  is an eigenfunction of L  corresponding -to the 

eigenvalue X       and we wish to find the eigenvalue of L + eM which 

approaches  X   as  e  approaches zero.  Assume 

CD 

X = X,, + ?■ eX, 0  1   k 

and 
CD  k 

u = u_ + 2 e u. Ok 

where the X   and u (k > 1)  are to be determined.  Substitute these 
k       k  - 

expansions for  X  and u  into (33) and equate the coefficients of the 
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corresponding powers  of     e     on  each side of the  resulting equation. 

In .this  way we obtain the   following set  of  equations: 

(35) 

Luo = Vo- 
(L -  X0)u1  =  a^ - M)u0 

(56) (L -  X0)u2  =   (X1  - M)u    +'X2U0, 

etc. 

The   first   of these  equations  is   automatically satisfied by our 

choice  of    X       and    u   .     In the  second  equation  we  do  not  know    X. 

and     u   .     In general,   this   equation  has  no  solution because  the 

homogeneous   equation 

(L - X0)v  =  0 

has   a non-zero  solution    v   = u   .     A necessary  condition  for  the 

existence  of  a  solution of  the  second   equation  is   that   the;right- 

hand side  be ■orthogonal  to     ü   ,      that   is, 

Iu0(X1  - M)u0 =   0. 

This  equation implies 

■     . xa .^0 = ^uoMuo 

and thus defines  X. .  With this definition of  X.,  equation (35) 

will in general have an infinite number of solutions because to any 

particular solution v  of (35) we may add a-,ur, where a,  is an 

arbitrary constant.  We choose  a,  so that if 

ui = vi + aiuo 



1h 

then 

JUU      a   0. . 

This  will be satisfied  if 

•    a1i.u2  =  -$u0v1. 

Equation (36) may be treated similarly.  It will have a solution 

only if the right-hand side is orthogonal to u , that is, if 

This equation determines X   .     If , v  is now a particular solution 

of (36) , then  ' •       ■,"• '    ■'   ' ' ■ .   ■ ; "  ' ■.-. ■' 

ü2 =  v2 + a2uö ■.      '• .  •- /' 

is also a solution.  We choose ■ a^     so   that  . ' ' " .• 

Ku2= o' ■_.;■  : 

that is, a0 .   satisfies- the equation '    ■  .   *• 

iv2uo + a2j.u2 =,o.     ■._ :; 

In a similar way, we can successively determine X   .   u   and . 
'    . ■ . n'  n ■   ■ 

thus obtain, the Complete expansion for X     and  u.  Under fairly general 

conditions on the operators  L  and  M,  it can be shown that the; 

expansions converge for sufficiently small values of  e.  Notice 

that, because of the way the  a's  were chosen, the eigenfunction 

. u  determined by the expansion is such that ■ . 

5uu0 = ju^.   •■ 
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Chapter II 

SINGULAR PERTURBATIONS 

Introduction * . .    • @ 

In the last section of Chapter ]* we have discussed a method for 

finding the eigenvalues of a complicated operator as perturbations of the 

eigenvalues for a simpler operator.  In the present chapter we shall 

discuss operators for which .the proposed method breaks down and for 

which a more sophisticated approach is needed.  The type- of.difficulty • 

we shall treat is Illustrated in the following- example given by 

Lord .Rayleigh:  ' , •  •       ... ■ '    ' 

Find  the values of X.  for which there exist non-zero solutions of 

(1) .-.        euIV - u" ■= \u 

such that u(0) =u,(0) = u(l) =U,(l) ='0. 

' This eigenvalue problem when treated by the method of the preceding 

chapter leads to the equation .      ' . • ' • 

(2) ■   ■   - u"  = \u 

with the boundary conditions u(0) = u^O) = u(l) = u'(l) = 0.   For any 

value of \,     the only solution of (2) satisfying all four boundary 

conditions is u identically zero and the perturbation method breaks 

down before we can even begin. 

A problem such as (l) for which the simple perturbation techniques 

explained in Chapter I do not work will be called a singular perturbation 
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problem.  The singularity is obviously due to the- fact that the zeroth 

order equation, that is, the equation for  e = 0,  is of lower order 

than the original equation (l) and we are troubled by a plethora of 

boundary conditions.  This chapter will'treat the general case of an 

operator L + eM,  where L is a differential operator of the nth 

order,  M a differential operator of the mth order and m > n.  We 
* 

shall discuss both the eigenvalue problem for L + eM and the solution 

of the non-homogeneous equation 

(L + eM)u = f, 

arid also  give  a priori  rules for determining which boundary  conditions' 

will be used. 

'The Exact  Solution  for the  Rayleigh Problem .    '    .  ' 

Because  equation  (l)   has constant, coefficients,   it can be  solved 

exactly..    Assume,   u = e   '"   is a  solution of (l);  then    r.. must'-satisfy 

the  equation •   ' •        ' ' .       '• •''■."■ 

'■.'•■■••■■• 4   ' 2 r ; ■     ■      er    - r      =    \. ■  _       • 

•   "  • '   ■ 

2 ■ ■ ' '   ■        ' Solving  for-   r   ,     we  get 

(3) 
2 r    = 

1 +^1 + 4Xe: 
~2e 

We  assume     e    small and positive  and equal to    n      and'consider first the 

positive   square  root- in (3).     We  find 

2 _  2 + 2\n2 ± QJIL)   _     -Zf-,    .  1   2   .   n/   ^i r    =  L-s ^-J—^ - t]    [1 + Kf)    + 0(,T] ;J. 
2ri 

• 
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.'.'•'♦ 
Taking the  square root of this,   we get 

(4) r = +-r1- = ±n~:i'[l + |xr,2 + CKf)4")]. 

From the negative  square  root in   (3)   ve   find 

2 1 1   -   [1 +  2\vl
2  - -TX2^ +.0(T]

6
)] 

r 2 • • • 

= - \(1 - Kn2) + o(n4) 0 

and 

(5) r -+ lr2 = + i\
l/2(l - | r!2) + OUV 

■ Using (A) and (5)> the solutions of (l) are linear combinations of 

' r, x   -r, x .        .       • ' 
■     ' e • .,  e  " ,  sin. r-x,  'cos r„x. 

Let us take 

u = a sin rpX + ß cos r„x + ye  '     + Y_e 
r-, x     -r x 

where  a, ß, y   ,   and y  are constants that will be determined to fit 

the boundary conditions.  We have 

u(0) = 0 = 0 + ß + T+ + T_ , 

u-«(0)'= 0 = r2a + 0.+ r^' - v^y_  > 

'. ■ '• •  • -'     . ,        ■ •  • • ■  ri     '  -rr    ••   ■    ■ 
. . ■ ü(l) = 0 =. a.sinr + ß cos r + y, e' .+ Y_e   >    • 

'■•  '■    '^ rl  •    '"rl 
. u'Cr) = 0 = r^a cos r - r2 sin r + r Y+e  - r,Y_e . • • 

These four linear'equations for  a, ß, Y+ 
and T_ have a non-zero solution 
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if and only if the determinant of the coefficients is zero, that is, if 

and only' if  ■ 

* ■ t^ 

(6) 
^1 

r., 
sin  r2 cos r2 e 

r2 cos r2 -r2 sin r- rle 

1 

-r 1 

-rle 

=     0 

Note that in   (4-)     r,     has  been defined so  that its .real part is positive 
-Tt, 

for small values of This implies that e 
1 

goes exponentially to 

zero as' ■ f] goes to zero. .This fact eliminates the last two elements in 

■■••.■■•'■ .   ■ • '' "^l 
the-fourth column of (6). .Multiply the third column of (6) by e    so 

as to- get exponentially small factors in the first two elements of the 

•third column»  Because, of this condition (6) is equivalent-to the 

following: ; '-  .  ■•■•..._._•.  '  .-  ■'.'■',.'  ■ '. - - 

0 = 

- :"p:>.  .; :-; •■.■■"•.•■•■ 1. ■ ■ P 1 

■2 
rl-. 

sin, r? 

■ o ■ , ■ 

■ cos-r2 

' •  0 . 

1 

-r 

0 

■ r2-cos r2 ' -r»slnr2' ' rl 
0 

sin r„   0 
+ 0(r-X) 

Since  r.,  approaches infinity as r\     approaches zero, we conclude that in 
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the limit we must have 

sin i"? 
= 0. 

1/2 
However, from (5), T2~'K in the limit5 therefore, 

(7) sin N/\ = 0, 

2 2 ' 
or \ = n IT  , for n > 1. 

This result shows that in the limit the' eigenvalue problem for (l) 

goes, into the eigenvalue problem for (2) with the boundary conditions 

u(0)-. = u(l) •= 0.   Using (7) and the boundary conditions, we can see that 

also the eigenfunction of (l) approaches the eigenfunction of (2) with 

zero boundary conditions, namely,  sin nnx. 

Boundary Layer Effect ■      '■ ° 

We have•just shown that as 'e  approaches zero the eigenfunctions 

fqr (l) approach  sin nnx. ' This seems .paradoxical.-because,- even though 

u = sin nnx satisfies the limiting equation.(2) and some of the boundary 

conditions, it does not satisfy the'conditions -'u^O) = u'Cl) = 0-.- • We . . 

proceed to investigate how the boundary condition u^O) = 0 is lost ' . 

as" s  approaches zero. •  '.•  • 

To study, the behavior of the solutions -of (l) near ' x = 0, 'we 

"stretch" the x-axis by-putting - 

X  =° f]t -     . 

in (l).  The equation becomes 

2 
(8) ■  u - u = Xr) u 
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where dots denote differentiation with respect to t.  The boundary- 

conditions at t = 0 are still u(0) = u'Co) = 0 but the boundary con- 

ditions at x = 1 become conditions at t = T]   which approaches infinity 

Notice, however, that t = « does not correspond to one value of x but 

to all values of x such that q x is unbounded.  Because of this, we 

cannot apply the conditions at x = 1.  Instead, we try to find a 

solution of (8) or, more precisely, of the limiting form of (8), that is, 

(9) u--ü = 0, 

such that u will, for large values of t,  fit in or match the function 

u- = sin imx = sin irnrit. 

Any solution of (9) that satisfies the boundary conditions ' 

u(0) = u^O) = 0  can be written as .  ■ 

(10) =  a(l + t - e1) + ß(l - t - e"1) 

where  a and ß are arbitrary constants.  To have this'solution fit Into 

the' function sin nnr|t,  it is clear that, first,  a must be zero. • Next, 

if we let ' t • go to infinity but'in such a fashion that x is small (this 

-I/2 l/2 
can.be done by taking • t = T]   .  and x = 8 ■) j  "the function : sin  irnrit 

can be approximated by. nnr]t;' consequently, for u  to behave like 

.nnqt when t is large, we must'take  ß = -Trnr|.  We therefore conclude. 

that the appropriate solution of (9) is   ■  . . • . 

(11) u .= TTn:n(e  - 1. + t) ■ = irnx + TTnTi(e ^" -l),. 

A similar argument can be made for the neighborhood of x = 1.   If 

we introduce the stretched coordinate 

1 - X = fjT 
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into (1) and go to the limit f) = 0,  we again obtain the equation 

(12) uIV - u" = 0 

with the conditions u = u1 =0 for T = 0 and u behaves like sin TTn(l-iTc) 

as i    approaches infinity. The solution of (12) satisfying these con- 

ditions is 

(13) u = cos nn (l - T - e" )nnr\ 

=    cos nTT[TTnfi(l  - e^   ~ ''")   - fin'(l'- x) ]. 

A study of (ll) and (13) explains the paradoxical behavior of the 

zeroth.-order elgerifunctlons at the-boundary conditions.- The actual eigen-' 

function, for f] ^ 0,  behaves like (ll) in the neighborhood of x = 0 

and like (13) "in the' neighborhood of x ='lj  thus,-, the actual eigenfunction 

•satisfies .all four boundary conditions.  But as both (ll) and (13) indicate, 

as  x moves away-from either endpoint the exponential terms damp out very 

quickly and the actual eigenfunction goes .over into ' sin nnx, the zeroth- 

order eigenfunction.  This'situation is illustrated,- on an exaggerated 

scale, in'Fig. 1., ■ .'-'•  '" • ■"■ ■      .'■' .■■    -•   '• '• .. ..- •• . •    • • ' 

0 r, l-Tj"'  1 

FIGURE I 

The behavior of the curve at x = 0 and x = 1 is typical of that which 

occurs in boundary layer problems in fluid flow. We shall call boundary 

layer effect any such occurrence in which a very sudden transition occurs 

between two parts of a solution. 
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First Order Correction to the Eigenvalues 

To obtain an Improved value for the eigenvalues of (l), we use (8) 

after replacing u on the right-hand side by the zeroth order approxi- 

mation sin*J\  x thus obtaining 

(14-) *ü* - ü = r| \ slnJX  rjt . 

We solve this equation in the neighborhood of x = 0 with the boundary- 

conditions u = u,=0 at  t = 0 and u matches sin nntit as  t 

approaches infinity.  A particular solution, of this equation is the 

function      . . . 

• sin^X Tit 
2 

1 + Tl X 

•For the complementary solution we shall use the functions e , e   and 

the functions cos rintlt' and sin nuqt instead of the functions 1 and 

t.   We choose the cosine and sine functions because they are the exact 

solutions of the limit equation (2).  We therefore put 

sin J\  Tit   , j.   ,    n    • j. t   , -t u =  ;i'—j-1 h a cos niTTit +  ß sin nirTit + Y.
6

    
+ T_e 

1 +     fl X . ; 

where  a,- ß, y  ,  y  are to be determined to'fit the boundary conditions. 

In order that u not go- -to Infinity as t goes to Infinity, we must 

have' 'YJ = Q-   To satisfy the conditions u = 0 and u' =0', we find ■ 

• .   . a + x      =    0, 

^ Ti(ß +  —-) - Y = 0. 
1 + T] X 
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To have u match with sin nirnt as t goes to infinity, we must have 

p + (i + n2^)"1 = 1, 

and *f\  approach nrr.   Neglecting terms of order q , we conclude that 

(15) u = SJa-a^jt .^ n(cos n^t -  e"*) 
1   +   T]   X 

_     sin y/X  x        n-    ( -X/TIS 
-     p— - »yx fi(.cos IITTX - e        '). 

1 + r)  X 

Fonnula (15) gives the correct (to order r\  )  behavior of the eigen- 

function near x = 0 and also in the middle of the interval 0 < x < 1. 

To find the correct behavior of the eigenfunction near . x = 1,  we put 

1 - x = Tft  in (l) and obtain  ; ' • 

u - u.. = f] Xü. • 

We desire the solution of-this which satisfies the conditions u = u' = 0 . 

at T = 0 and again matches  sin N/X X = sin N/X (l- - JIT)  as %■   approaches 

infinity.  Just as -in-(15),.'we. find that   ;.•,. 

_'   sin s/X TIT r     ■ rr i' -Tx . ■ _   . u    -     ^3;—' 5 1- T] N/X  tcos^ nTTTiT   - e ■ ; 
•    .    ■    ' COS  N/X    (l+Tl   X)    , 

(16).   ... •' *     .       ■ .; ...    ;•-,■•.•; ■■.•■■ 
;    . ■ :     =.   sin >yx   (l-x)^ + ^  [cos  n<f(l_x)   _ e-(l-

x)A.]. 

(l+f) X) COS.N/X        .-. ■•.-.. 

correct to terms of order r) •."       '     ■ 

■ In order that (15) and (16) represent■the same solution we must have 

sin is/X x - f] ^/x" cos nrrx 

= , 3ln^(l-x)   +     j^ cos nrr cos UTTX, 

cos ^yx 
or 

(17) cos <J\ x sin J\    -    r\ N/X cos nnxCl + cos >J\ cos nrr). 
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Clearly,    .v/X = nn     in  the  lowest order. If we  put 

*J\    —    nTT + X, r| 

In (17) ,  we find 

sin X-, T] = 2T]mT 

2 
correct  to  order     T]   ;     therefore,     \    = 2mt    and 

-s/x   =   mil + 2T\) . 

The eigenfunction to this order is  ' 

■ . ,. . • •    •   • . 

sin .nn(l + 2TI)X. 

The General ■ Case '■.■•■. .■■■■ , i-,'"■■/-.. 

Let us consider over the interval-  a < xV;<:.blithe.;, general .differential. 

equation ••■••,     :,   ::    ., . ■,•...''..;■'. - ^. / .,:■■■ \:\.r'y/.-^.':*y:::J::-'^---':'^^^-:\\:\.--'^.^. j!-'k:-:'''  .'••■■,:"":''- .'' 

(18),    ■•.■■._'   ■."■       V:--;:-' ^(L "+ EM)Ü;= f ^-v^:;;''     ' v'^v" :..; ^:V vv;,:;\^ • 

•where      :-     ■.'./:■..    '■:"'-! v,"'I  ■' ■ ,"'■■'                 \.''^'-;^;-;-'i-.',:"::V,^^/V-U: ■"•■'/ ,'■-.■:'"'■■■.   '.^ -.•   ;- 

■-■■■ '"'^ ^"   ...•;:-''' ""^:'5''::"   '■ Lu■ :-=:;;:';z- vk(.^)^ ■ ,-. ■';';;:':      •■>■..; 

?-:-^:-<.^:.-;-■;■•"■■ " Mu    =■  S"   q, (.x)u^;, 
..;: "■:;';/>   :;>v;• ■.■■....•.■'   ■■■••.•   . o •   •■ ;■ ■'■.•■..•'.• : • 

and m ^>n.   If f = 0 and. L = L-.- --X where Ln .is a differential 

operator of-the same form as L,  then (18) becomes an eigenvalue problem; 

otherwise, we shall call it the non-homogeneous problem.  In both cases, 

to make the-problem precise we mia.t have m boundary conditions which we 
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represent as follows: 

(O       ai-1 

(j), B1(u)   = u    X  (a) •+    2    a1.u
u;(a)   = 0 

j=l 

/     \ a  -1 (,a  ; s / .\ 
B  (u)   = u    S   (a)   +    2       a   .uU;(a)   = 0 

0 < "i < «2 - 

(19) 
(P-L) P.-I 

B   ...(u)   =u    x   (b) •+    2       ß^u^/Cb)   = 0 (J), 
s+1 

J-l 

-1 

lj 

< as <ni 

0 < P-L < ß2 <  '•• < ßt < m 

3m(u) = u .^ (b) +  z    ^.u^-^b) = o; 
:.  ,      j=i    ^     ■ '    •    : 

Here     a.,   a...   B..   B. .     arg  given constants  and    m-n ='t. 
i  ij' ri' rij ,  o . _  . 

.. When ■ e goes to zero in (18) , the differential equation reduces to 

a differential-equation of lower order, namely,  ■■ ;, .'-V ..  ".  ■'' ''..\ 

■   •    ■■ '       .' '    "    ••■'■''   LU- '-" f '■••. ■■•■ ;■■' ■■"■■■''  ■ .■••■■■: ■   * ■• '• '■• 

_-. 

'ä.nd, ■ just as in the Rayleigh .example,, we must determine;'which of the... 

boundary'conditions in (19)" will'be retained. . ..In ■ order; to •determine 

' '■'-■ '■■,■■' ■■ ■ . ' ' ■ .. •'     ■••.'■' 

this, ,we need to know the asymptotic■ behavior of the 'solutions, of the 

homogeneous equation  ■ " ■  ■ ■  • ',   . •■. '• ' , ■'',." •..■'.' "..'■'        ''   ...■■ 

(20) Lu + e'Mu ■ = 0. 

It is convenient to put e = H <•.• -We write (20)'as 

(21) ja    = ' -f) Mu 

and we shall show that this equation has n solutions which are analytic 
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power'series in rj..  (It is assumed that p (x)  and- a (x)  are analytic 

functions of x in a < x < b and p (x) ^ 0 in.that "interval.) ' We 

indicate the idea. Let -u.-Cx) .be any solution of 

Lu = 0 .' 

neglecting boundary conditions. Put 

(22) U.(x)  =  U  (x) +  2  TlU.,(x), JO k=l jkx 
1 < j < n 

in (21) and compare corresponding powers of TJ.  We find 

Lu.k(x)  =  -^j^-t^)' 

Let    u.,(x)     be-the  solution  of this   equation  such that  the  solution and 

its   first    n-i    derivatives  are  zero  at    x = a.       It is  clear  that  this 

solution exists  and is unique.     Thus,'  starting with ' u.r.(x)," we can 

'successively find all the    u .v(x) ' and thus  obtain the expansion (22)   for' 
. . .        ' ■ J • ■■■•'. 

u.(x).     It can be  shown that  the.expansion is.an asymptotic   one.     By 

choosing    u.   (x), .(1 <  j  < n)     as    n     linearly Independent  solutions 

■of   .Lu = 0,,    it is clear that we- shall get'   n    linearly independent   ■ 

solutions, of (21),.     . ■. 

To obtain    t    other linearly independent  solutions  of (21), we  begin' 

by'considering  the.characteristic   equation ••      ' 

(23) p(x)+rq(x)   =0. 
^n ^nv 

If we assume q (x) ^0  for a < x < b, this equation has for every x 

in (a,b)  t solutions, namely, the t t   roots of -p (x)/q (x).  We 

shall assume that 

Re r(x) /    0 
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for every x" in    (a,b)  and any root of (23). ' '  ' 

* 

For any root r(x)  of (23) we shall construct an asymptotic 

expansion of a solution to (21).  For simplicity of exposition, we shall 

show how the first two terms of the expansion can be obtained. The 

infinite expansion can be obtained in a similar fashion.  For further 

details ve refer to a paper by Jürgen Moser in Communications on Pure and. 

Applied Mathematics, vol. VIII, 1955, pp. 251-279. 

It is important to distinguish between Re r(x) > 0  and Re r(x) <0. 

We shall denote a solution of (21) corresponding to the case  Re r(x) > 0 

by y(x)  and a solution corresponding to the case Re r(x) < 0 by w(x). ■ . ..■.■..■'.■■'■ 

; Pu't'."''■./. :: ■   :-:;r" '/ir.-^r,::':'^':-'''  ■'■'.•"   ':    :;: ■"     ' ..'    ■ ■■ ' ■'■':'■:'-':-  ' 

^:v;;;:h(x) ; = ]   r(0.d?- ■-. r "" : ;. : . :■       ■"''■>:[:}:
:' 

where' ;;ä:-^.c'<
:b. ' Let ■'    '',. ''■/■'-;^^:;/-\?:.' ^ '.'.:-'y.'-. ■■:''''■.' .v, - ,:l:..:   '"■■■.■ .'. '. 

' ''V--; ■ ;v(x) - n ^[^"^(x) ] ' [VQ(X)\+: n^Xx);+ ,> V. . : 

Note that ■ ./- ".:.;_.■_ v?:;^^^ J;4 v^'Ufc^-^..^'iÄ/vy'y \:f\'':':\.-:'    •':■' ; ":;■•'".', :.-■-■.;.■',..,' 

^^(x) = rin"jexp[T1"
1h(x).]>{r*i(x)v^(x)+ n [r^:;+; ^^-

; r^^r'VQ'+ jr^"1^',] + •••]. 

Substituting   this  in   (21')r and t dividing, by     exp[T);- h(x):J ,--' .ve  get    ■■■. 

/ ' v r-n   .   ,■■■■ r n       /'n(n-l)  ^•n-2».T:v':,.-.'7 '.   n-1   "■, I-)   1
,'':.   '■/ \   n-1  . ■ ,   , 

pn(x) [r v0 +  nLr v1  + ■ s
2   /   r,  ^r'Vg tnr.;    v0 • J ] +   ^^(x)1"      vo      ' 

/   \ c m  "' ,      r-m       ,   mtam-1) . m-2'••,      ' ,       m-l     i ■n r   \  ni""l      — n + qm(x)[r v0 + fi.[r v1 + -^2—L r      x'vQ + mr      v0']j + IP^^C^r      v0 - 0 

after neglecting  terms  of  order     TI   .       This  implies  that 

• _     •■     [Pn(x)rn + qm(x)rnl]v0 = 0, 
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*,"■.' ' *     .'V    I* ■ * 
. Y   . ^ n   , ni\    ,     Or/     -, \       n—2   ,     /     ^ \       III-2T   .   r n-1   , 

■VPnr        qmr ^  + -J-[n(n-l)pnr        + m(m-l)qmr      ]  +  h^^        + 

.+ q    , r      Jv„ + V-'lnP r        + mq r       ;  - 0. m-1 0 0        n na 

Because of equation (23),  the first of these equations is  satisfied for 

arbitrary    vn(x)     and the  second equation reduces to 

f*'i\ ir       r   \  n-1   , /   N   m-1-i rn(n-l) n-2   .   , (24.) v0
,[npn(x)r + mqm(x)r       ]   + ^[-^g—^ Pnr      r'   + 

••;.•■.•-.■■••.-•;      . m(m~l)    -m-2   ,   , n-1   , „m-li    _    n ■   •■■ + —^—- qr      r'  +p    ,r        H-q^r       J    -    0., 2       . .^m ■• .a-1 Ta-1 

The coeffielent of. -v^1  In (2^) can never be zero because, if it were, 

r • would be a multiple- root of (23).— which is known to be impossible;' 

consequently, (24) is a. linear ordinary differential equation''for v (x) ' 

which can be solved by ■ separation of variables. ' '• .  . •'    '.. • . .• .-■,..■ 

.It .is easy to show that a similar procedure'will enable us to ::/v 

•determine.a complete expansion for v(x).  The proof that it is an 

asymptotic expansion of a solution of (21) will be found'in the.'paper of 

J.'Moser cited previously.^  ; . 

The Lost Boundary Conditions       ... 

Let us return to (18).  For the non-homogeneous problem let u  be 

a particular solution of (18).  Then a solution u(x)  of'(21) must be 

found such that u+u  satisfies the boundary conditions (19).  Similarly, ■• 

in the eigenvalue problem a solution u  of (21) must be found satisfying 

the boundary conditions (19). We wish to determine which boundary conditions 

will be retained in the limit E or T]  equals zero. 
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The previous sections have shown that the solutions of (21) can be 

divided among three classes:  the functions u-i(x),...,u (x)  which 

were obtained in (22) by starting with solutions of Lu =0,  the 

functions v (x),...,v (x), where p is an Integer not greater than t, 

which were obtained in the preceding section on the assumption^ -Re r(x) > 0, 

and, finally, the functions w-, (x),.,. ,w,  (x) ,  which are obtained 

similarly to the v(x)  but on the assumption that Re r(x) < 0. 

If- u is a solution of (21), we may write - . ■ 

u =  cu u,   +   •••.+  a u     +   fL v.,   +   • • •   +   ß  v    •+ v., w.,   + • • *   + Y.     w, 11 nn^ll ^pp'll ' t-p  t-p 
* 

and then■the'boundary conditions will .give us equations such as these: 

(25) 

«AW^ ••. -f.anBk(un) + ^^(v^ +.;•. t-ß^Cv-) + 

■    . +--r1Bk(w1) + •-•■+ rt_pBk(wt J ' = ^(u^, ,.■ i < k < m. 

The existence of a solution of these linear equation^ will depend on the 

behavior of the determinant of the-coefficients, that is', -on 'the determinant 

V^ '•••• Bl^ , .^c^)- ■vv ■ w Bl^t-P). 

BsK>- ':;.---BsW-". ;■ w ••• '^V .'^(w^ Bs^t-P) 

+r(ui) ••;:w-n) 
• '• •                    • 

V^il 
• • • 

Bs+l
(V- 

• 

B
s+l^l) B   ^n(w+.        ) s+1    t-p 

• 

BmK) •••   B (u  ) , mv   n Vvi) B (v ) m^   p w B (w.      ) nr   t-p ». 
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© 
• Suppose  that ■'v, (x)    'has  the •"exponential factor    exp[ti~ h, (x)]    where 

• . ■ •    ■ x 

■"':■•■'"■ •'.•.    hk(x) = ^ ^(Odc 

and    Re  r^Cx)   > 0;   ' then the  quantity    exp[Ti~ hk(b)]    will be exponentially 

large compared to"   exp[Ti    h, (a)].       If we multiply the column of.  A    con- 

taining    vk    by    exp[-ri- hk(b) ],     the  first    s     rows'will-have: the-factor 

exp[T1~
1hk(a)-r1"

1hk(b)] =, exP[-ti~1 ^    r(0d?]/^ ' 1   / 

which goes  exponentially to .zero .as     ri   ..goes  to'.zero;/   This .implies ■-that:    ■-/^^c 

the  first,   s     rows  of the    v-columns    will go  to  zero.   ;\,      ■,.;../;:^.v.f.;,ÄV^:;,   .^''\::^ :-v.-. ":- 

Similarly,   by multiplying "the., w-colurahs 

last    m-s    rows" "will-have .'the  factor" ■ 

)luran"s ..-by' exp[-Ti~ h(a) J, . the ^ '  ,      ^ 

■ •. • _:e^h-Vb)7^h(a)]^;ä^ 

which goes exponentially to , zero as ;../;t)"";[. goes"
!%o.?zero'i\R;Thls iraplies-.that&v VK->":;V:

- r^:^-";' 

the "last" m-s  rows of" the" w-columns:, will "go to zero. „ 

."There, is one further fact "■ to ..be .noticed.:'^ The^gthX;'derivativeft^-^ 

of v(x)  or of w(x) ■ has a factor ri, -Jy^bec^se>df:i;the":differentiation;::\.;.v, ■::- 

of the exponential".  As  r) goes to zero';',";-this ■ implie"s'".that "■■'■. B »• (v);.;":."" .."* 

goes to zero compared to. B (v)  for l'< k:<.s-1 and B- , (w)> goes     -   ■ ' 
...       ■  .    .  sv,. . -      — ■:.■;■;■.:.'.y* :■'■£,.  ■      m-k ;.'." •■•i!Tv-.-. >.-.   v ";.■■.■/•.jv"« ■:-■- 

to zero compared to  B (w) .for 1 < k < m-s-1". .  Using these-facts,, we,.:'' 

see that the .leading term in ' A is obtained by expanding the following" :>'/. :.' "%'-i: 

determinant:       •;■ •■■;■■• ' ■;';; 
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(26) 

BiCvu.) ••• EL(u )      0    •••   0      0-  ••♦.■ 0 

• •   •    0    • .      '   * • ••• • • ••• • 

W •*• Bs(unk^,    0       •••      0 V^ '" VK-p) 

•(v ) 
P 

. *■■' ■,:•■■ ' ■ 

.^;: C^'Here^the primed, ^ß'^^ändfi B^ and  B  modified by'the-  ' . 
.  - s    ,  m ^      ■       s .. ... . -  m .•/ ■    •, .  -;. 

v *'elimlnatiori-of the exponential factor and the power of 1^.   Clearly, the 

5,j.'iSwexp^'sioniOf. jbhis\;determh'ant wlll^not-contain any term-involving ■ B (u, ) ■;. 

',:''■ ■"'or';"© (u, )'.;• ;;This'meahsythe'böiin'dary.'cpnditipns'-^ ■• ■ 

. border at: -.a, 'and b;, must, be discarded'" and only m-2    conditions are f-etained.' 

'■..The.■determinant -in' (26).;;mäy !be identically zero'because'.'there, are '... ■ .' ;•."■ 

J .too many zero rows.  This: will always happen if , n <•. m-2.- -..In'that case. 

^^ in ythe expansion .of-A.' we'must retain row '.nCahd row -.m-l- for-the'"'■  :"--. ■.' 

• -,'. ; y's  and;r6w;, s-.vähd row ,^ s-1 for .the''Jw,.s. ,■.:-■ This-;'.'wouid imply discarding ^' 

■'■the two highest derivative boundary conditions .for-boto  X',=.''4"- an(i X-:=  b. 

This-procedure continues until we obtain a non-identically zero determinant - 

■ , or,:;what will-be equivalent, ..exactly n; boundary conditions retained. " . 

Ari-,examination of this method leads to the following rule; ■'■•.; . "'■ 

;,' ,. . Discard a boundary condition at an endpoint for each solution 

of (21).that becomes exponentially large there (relative to its behavior 

at the other endpoint).  Discard the boundary conditions in decreasing 

order of magnitude of the highest derivative present in the boundary 

condition. • 
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For the present problem since -there..are p functions v(x) which 

become exponentially large at x ='b, we discard boundary conditions 

B,B ,,...,B   .,,  and since there are t - p functions w(x)  which m  m-1      m-p+1 ' r _ 

become exponentially large at x = a, we discard boundary conditions  B , 

B ,,..., B  ,,  ,.  The count is right because t conditions will be 
s-1       s-t+p-1 y 

discarded and m - t = n will be retained. 

■' What happens if there are more exponentially large functions at an 

endpoint than.■■ there are .boundary conditions? For example, what happens 

if s - t + p.< 1,?  In-that case, the solution of (18) will not approach 

(27)- 

a limit;as e 'goes to zero.  Consider -the following example.: 

gu" + au* =1 

with u('0) - u,'(O) = 0.  .The solution of this equation is 

(go)'•■   ...v     :•.••■■■•   .    ::. u = - +-^(-i + e'ax/e). _ x . e u - I- + - 
. •. •    a 

If', a-> 0, -so that the solution e    .'       is exponentially .large at. x'= 0 

'(compared to' its vaiue e ,    at x ■= l)-j, then (2.8). approaches the limit' 

x/a.   This-'limit is also the solution.c^" the-limit of equation (27), 

namely, ■ ;- ,     ■'•,..   ■ •'.  ••_•'." . ' ' 

,■'■•..•■.- '■' ••;••.  ■'•'•. an' = 1 ". .■;.•; '.: ;'■' . . ' ■• 

with'the' highest derivative boundary condition  (u'.= G)  discarded and 

the' other boundary condition ■ (u = 0)  retained.    •"' ,    .   . 

If a < 0,  the solution, e '    -.is exponentially'.large at x = 1; 

but there is no-boundary condition at x =1.- Note,'however, that ,(28) 

does not converge to a limit, in. this case. '..     :•• ■ . 
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Chapter III 

RELAXATION OSCILLATIONS 

An-interesting type of singular perturbation occurs In the  study of 

the Van der Pol equation 

(1) y" Vil   - 7 )?'   + 7 = 0 

■when the parameter    p.    Is'very large.    If we change the independent' 

variable  from    t    to    [it    and put    e = p,-  ,     equation  (l)   becomes 

(2) ■:y -. (1 - y )y.+ y = 0 

where dote denote differentiation with respect to the new variable, i Put 

y = x. in (2) and integrate to get the-following form of the equation: 

.(3) ex - (x - •—)   + x = 0. 

- • We shall show that (3)'has periodic solutions and we shall find'the 

period T asymptotically in e for small values of e. From the-form 

of (3) it is clear that for- e = 0 the differential equation-reduces to 

a first- order equation which has no periodic, solution;: consequently, the 

perturbation- around  e = 0 is singular.-  •       , . "   . ' " 

The analysis of (3) becom'es simpler when time is-eliminated;    . , 

Since y - x,  then x = y dy/dx and (3) can. be written as-     .  .  . ." 

(A) 

where 

dy _ F(y) -x 
dx 

(5) F(y)  = y. - r/3. 



34- 

Let us show that any trajectory of (4.) tends to a periodic orbit. In 

Fig. 2 we have drawn the 'Tundamental" curve  x = F(y)  and a trajectory 

starting at some point P.  ''",'■. 

■'-:* ^!?Y'''-Sy 

.'• 'i\ .'.{■  :*",-■*■?   ■'^''■.■■~1   •■.'*■*•   \-:-s-\-.:  . :.^K- 

.iÄ^""*   r- ...„r^-: -. 

-V. ; >  . ■ ^ 

^ ".'*';i-fe'^,.   '; >..";^.■'-.,.,- v^!-;--- -;-;-  v. ■;;...■.;      *     .■.■.■>-■.;  . - •■V../-"-     „■.       -:,-"■.*•■■     . . •*" 

Note first vthat' dy/dx >, 0" at all points  to, the.'left of the curve    x-.F(.y),. 

; „and .suchvthat::.,. y > 0;:i,and^ati ;;ali:,pÖints^;;tö "the^hlghtiof ^ ;x- = -F(y).i  and  such'. ''''.■.■.■'■' 

■ ^;tha,tU-:y;^'0. _ ' ;,¥e ; have  indicated the 'parts; of ^the,plane :where ■■ '■ dy/dx .>. 0   .. '■'■, 

.  :öT ^'liy/dx </0     by "the   signs'^'+    and .■;-,'. .r:re.spectively>-;■ Note also'that "since"' 

dx =Vydt,V^the^ value of ■;,x^ rönJany^trajectory^imstrihcreas    in 4- 

. hal^ plane'*and ^decrease  in ■,the lower half plane.     We  have   in'3-' 

fact  by  the  horizontal  arrows.. """,•       >    :l ^   .   '       . ; 

Consider ;a.;:.träjectdry:;,starting'sat^a' point ^^^ from / 

the  curve    x = F(y) .,    From (7^) •b'ecäüse.'jevv.is'small»   the  value  of    dy/dx 

the upper.. 

.indicated  this 

f -r   •       « 
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> 

3- . .. 

must be large and negative.  Thus the trajectory must drop.very rapidly 

towards'-the fundamental• curve x = F(y):.  The trajectory cannot cross- • 

• the ■ fundamental curve for", if it did, the'trajectory would be in a region 

where its'slope is positive, the value of x is increasing (watch the 

arrow!) and the value of y is decreasing. The trajectory continues 

close to the fundamental curve until it passes the maximum point B and 

then, as can be seen from (4),  dy/dx becomes large again and the 

trajectory drops rapidly to point  C.  At ; C  the ■trajectory crosses the 

fundamental curve and  dy/dx becomes negative.  The trajectory must-stay 

close to the fundamental curve for, otherwise, .dy/dx becomes very large 

•and the trajectory is forced back.  Note also tha.t the trajectory cannot 

cross.the fundamental curve between C and D 'because above  CD' the • 

trajectory must-go toward the x-axls-with a positive slope and with the 

value of x depre'asing, conditions-which" are Impossible to. satisfy.  The 

/.conclusion is, then that-the trajectory is close to. the /fundamental curve 

■along .CD and'then rises'very quickly to some .'point. E- on the fundamental 
■.'■'•#    "■■ '.    ■. .   .    '.   • .     • ''        \    •        ■ ' .' '       •      .    ■     . 

curvö.  After E  the trajectory.keeps-going around in essentially the ••, 

-same orbit'-. ■ A rigorous, proof-that-ä periodic -trajectory is approached 

.con'be . found'.in Stokes, ■!'Nonlinear -Vibrations" ,'Appendix IV. 

. The above discussion has- shown that .■ 

the.periodic trajectory-can be-.approxi- . 

mated by two. arcs, ,AB  and" CD of. the. _ .• • 

characteristic curve and two vertical 

lines  BC and DA as indicated- in Fig. 3. 

To this approximation we may find the 

period T.   On AB and DC we have 

• 
' ■ . 

A (-1,2)^1^^ 
• 

-   y. ■ | ■   jM(f D 

Dl-i-l)^ 

"-"             *C(|,-2) 

FIGURE 3 
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x - F(y)  twt on BC and AD we have x _ constant.'. Since dt' = djc/y, 

we have        .  • ' *• .      .  • '    • . 

•    T = 5^=2JB 'Mai^ 2 ^-(l'-.y2) ^ = 2(lny--V)°J' 

(6). 

= , 3. - 2 1n2 

This naive attempt surprisingly gives the correct first order term 

for the period.  We shall see, however, that to get a correction term . 

requires a good deal of analytic manipulation.. Let us suppose* that, as 

indicated in Fig. l+,   we have a periodic trajectory which begins at some 

point A-,  on the fundamental curve and goes through the half cycle 

Indicated by the points A,,A ,...jA^.   The coordinates of A.  will be 

denoted by (x.,y.), 1 < i < 7-   We specify x„ = 2/3,  thus k       is 

® ) ' 

B>\A3 

A5 

\x^ 
/ 

\^ A 
'"^AT ' 

vertically above B and y_ =1,  thus A,  is on the- same horizontal 

line as B.   The other points will "be specified later. 

* The method used here follows very closely a paper by W. Wasow in . 

"Procedures of Symposium on Non-Linear Circuit Theory,"p. 87-97. 
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.././^ We ■begin\^%...estimä't:ing the deviation, between the curve A^A-A-  and 

the curve .•.•:A1B.-  Rit ^-- ^ 

J%%>?V^' 
then, using (^ and (5), we find    .  ''■• 
■•: ' .■.■ ' 

dy . , dy    ^ ^ , ^;.  u '  ,  ^/ ^ !3a?'tIrf 

(7) 

;   ay -*'■ U     .•^j- 

,      2-1  ;#- 

On the arc A, A„A_,  y > ,.1 and "u > 0.   Since u, ^ 0 and du/dy < 0 

at A,  and since., alorig;..^ A-, ASA^ f'we haYe7.,.dy < 0,  then du > 0 near ;. 

1     to.   A' A-^.       If     du     stays ^positive  in going  from    A-,      to     A,,:,.-then we mist 

have   in   (7) 

(8) u     <' ,.. ey¥' 
!'^ / ; r y-1 

If     du -  0     at  some; point,   y'""-,;'  ;'tiieh%'':u(y)-    has   a ;ma^imuih'Hhere  änd'-we 

have   for     y < y* ':;':\?--.   -s-.a.,,..,,,     •..-.. " -     : 

;u.(-y>.-.<'u(y*) - ^z: 
% Y' 

fiM,-}?. A:;V:' 

m %i<: 
:.'    : \v\;:: ■■■-■■■ -.p  -;i wJ?' ~ 1     J " ^ - \    ■: 

consequently (8) is valid for allSpoant-s on -^'A^A^J'/' 'b'' * '    ^^\   fV. 

The estimate (8) shows thai'-"the;.',deviation(,.fi;om' the';arc Ä-,B . is 

of. the order e  as long as the .,tra3ec't6'r.y,v;.is^h'o;t! .'too near-.'B.'  To 

investigate the behavior of the trajectory'iri. the neighborhood of B, 

we put        - ■■■'"■ "■'■■^.." 3:^,.'i'',s^''■*■.■'   •:Vl..,. 

(9) y = i. + ^\, x = 2/3 + E
2/3

T 
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in (4-) • • We find ••■ 

(10) 
dv 
dT 

,2 + 1 el/3v3 + T 

1 + e1^ 

As  e  approaches zero, this equation may be approximated by 

(11). 
dv . 2 .   _ ^  h V  + T  =  0. 
dT 

.Equation (ll) Is a Riccatl equation and with the help of the standard 

transformation.' ■.■.'• . . .' 

it may be"transformed to the linear second order equation 

(12)'.- ■•-:.-■ • * w" + tw a=   0. 

The solution, of (12) is 

= aAi(-T) + ß_B1(-T) 

where . A.(T)  and .B.(T)  are Airy functions.  (For. the definitions and 

properties of these functions see -Jeffreys, "Methods of Mathematical 

Physics".)  ' '        "'••'.■■' 

The appropriate solution of (ll) for our problem is the one that 

"matches" with the solution of (4.) as v  i> 00 but y - 1  5>0.  Let 

—>0 as 

s —>0.   From (8) and (9) we find that 

1 /? 
us..take     v =  e where     0  < r < 1/3•       Then    y - 1 = e ' 

■n    . 2/3/   2 ^        .1/3   /0N   y    2/3   -1 0<u=e^(v    +'t;+E/   v/3) .< E '    v 
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This simplifies  to 

••        . • •        .1/3   /r, .  ,      2  , s       -1 - e '   v/3   <    y   + T   <    v 

-r 2 
and for v - -e  , we see that v +'T must approach zero as v approaches 

' \l/2 infinity; consequently,  v is approximately equal to  (-T) '   for large 

values of v.  Using the general solution (12), we have that 

v = 
aAi

,(-T) + ßBi!(-T) 

aA.(-T) + ßB.C-T) 

and by studying the asymptotic behavior of A.(-T)  and B.(-T)  we con- 

clude that If v + T = 0,  we „must -have 

(13) v = 
Ai'(-T) 

A^-T) 

Formula (13) enables us to complete the specification of the 

coordinates of A-A^A .   The point A„ ' was defined by x„ -'2/3    or 

T„ = 0;  therefore, 

= 1 ,1/3 >1,(0) 

A,(0) 

The point A~ was defined by y = 1 or v = 0.   If T„  is the value 

of T such that A.'(-To) = 0,  then ' 
i v  3 

x3 = 2/3 '+ e2/3T . . 

The point A,  has not been defined as yet.  Let us take, y, = 1 - e 
4 •    ' 4 

where  0 < r < l/3;  then .-1/3 ->oo as  e —>0.  Let  T,  be 

the smallest value of " T such that A.(-t.) = 0.  (The. value of  T.  i-s 
14 -4 
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approximately 2.330  Tuen from (13) we see that .'.'■ /•      ;. .•..•■ 

iU)      '"     '       '•"       .        ■ x^ = 2/3 + e'^T, ■. ; v • ' ; /:- '  .  ■.• 

In order to ensure that v. ' approach infinity. . '■ ' : 

' ■ 4 •      _  .-  .  .       ■  ■' 
o •■ •''. 

The point. A^ is defined as the intersection of the trajectory • 

with thfe x-axis; consequently,' y^ -  0'.  To find • x,-, .: we use   '* •• 

■.     X
A    •.. .y4 ■■■■: "■•••■ 

from (4)•     We may express    u    as  follows: 

•     u    =    (y -1)2-+ i-(y - 1)3-+ x - I . 

. Since on the arc A,A-  the value of x is always increasing (because 
• 4 5   ■       .  ,. 

dx = ydt > 0.)  and the value of y ' is always decreasing, we have 

x - 2/3 > 0 and  |y-- l| '< 1}  therefore, 

u > (y - 1)-2[1 + i-(y - 1)] > |(y - I)2. 

Using  this   result,   we  find that 

-, _ r ,      r 

i"    ^   <   |'i  "' (y -l)-2dy   =. 0(e-
r)r 

0 u •   .0 • ••   . . 

therefore, 

"     ' •     ' -    r.i  l-rx / '2/3\ • x    - x      =    0(e       )     =    0(6'^). 
4 5. , ■ 

The  point    A, .   is  defined by taking    y/   - yr-, +  e.       Again,   we use   (4) 

for    dx    to get . . . 

5 6 .L,.      u 

• 
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Noting that    x^ = Fijr,)     and expressing    u    in, terms of coordinates  relative 

.nt    Ary,    we have 

u = x - x7 + |{y - y7)
3 + y7(y - y7)

2 + (y2 - l)(y - y7) 

to the point A7,  we have 

(15) 

> (y - y7)[j(y - y7)
2 + y7(y - y7) + (y7 - 1)1 

because x - x  is positive in the lower half plane.  The bracket in (15) 

has its minimum value when 

y - y-, 37^/2, 

that is,  y - ~jr./2.       Since this value of y Is positive., we conclude 

that the minimum value of the bracket along the arc AsAr     will be at 
.     9 2    .  ■     ■ 

y = 0.  We have then that ■  ■ ■ 

u > (y - jrj) [- y^ - y^ + y ' -l] > - (y - y^) . ■7.13 Jrj ^ 

Using this estimate, we get 

■ 

J    ^^ = 0( x, - xr' < e y-, 1 6   51 ^ - 1^7., ■     y_y 
y7+e' *  Jl 

e In e} 

To 

we nave 

estiraate x^ - x- we need another estimate for u.   From (7) 

du _  'i.2      n s      v 
V- ^    -    n(y    - 1) - ey > ey 

since on A.A"7 it is clear that y > 1,  u > 0 and 

Integrating this inequality, we find - 

y < - y6- 

(16) u >• - 2ey6(y - y7) 



42 

because u = 0 for y = y^.  With the help of (16), we have 

.. '■ ' • . y7
+e y7

+e 

• ' Ix^-.^l < E|y | • J   * ^- = 0(^/2)  J /  (y _ yJ-^dy 
y7   '      .   y7 ■ 

. = 0(E). 
o 

Finally, combining the previous estimates for the difference between the 

values of successive x's, we get 

7    Y   6.  6   5   5   ^   4- • 

= x. + 0(e1-r)  = 2/3 + e2/3Ty + o(e
2/3) 

4 4 

by  (14.) .     Since    x^ = F(y7) ,    we  see that 

i (y7 - l)2(y7 + 2)   .=    - e2/3^, 

■         3s2/\ 

^ + 2    =    " f ^2  ' 

therefore, 
e2/3 

(18) y7    =    _2 - ^-3^+ o(e2/3). 

Because  the  trajectory is  symmetric with respect  to  the  origin,   we  conclude 

that 

(19) • ^ = | +-e2//3T4'        ^i = 2 + e2/3V3' 

or 

Now that the coordinates of the points A,,A^ ... ,A7 have been determined. 

we can find the period.  Let T; . denote the time to travel between points 

A.  and A..   From dt = dx/y,  we get . • 

i 
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(20) 
12       -    y        i      y      „    y x1. 

yi 

But o 

(21) 

and 
y,    ,       J2    i,    y2 

u
2    =    |-F(y5)     =    F(y?)   - F(y.9)     =    5     dF(y)^ 0.(e2/3). 

since    y^   - J2 = 0(e1/3).       We have 

'3; 

."'2 

(22) 

-^   =    [1 + a(E
l/3)]  5     dF(y) '  -    5  3dF(y)   + 0{e) 

2    - -v. v 

:■■{-'äm.+ ^(i^)dF(y)+0(e) ;/
3-dFki + 0(e). 

Also,  with  the use "of "(8),  we   see   that 

(23) J       ^f    <    s   j'fLj    =     e-ln.(y-l) 
.yi  y y- 

= 0(e  In e) 

1 

Combining   (20),   (21),   (22)   and   (23),  we  get 

7-. 
(24) T =     f'3    dF(y)    ,   o/.l-rs 

12 - y + o(e
J-r) 

Next,   we   evaluate 

A 
^ -  I     f -   [iVo(e

r)]^-;x2) 
(25) 

2/3, e"/JTA + 0(e"/^  T  r)' 2/3 + 
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In the .same way, jus"t as we evaluated x.-x^,  x -x,     and x^-x^, we can 

•show that  . . 

'7 
^7 

• -y/ 
S\    ? - OU1"1") +'p(e In e) + 0(e) 

(26) 
' •  = o(e^). • 2/3\:- 

Evaluating (2/i.) and combining with (25) and (26), we get 

T17 = | _ln-2 + l^,^,^^ 

+ 3.5e2/3  + o(e
2/3) 

Sine e  T = 2T17,  we obtain finally 

T = 1.6 + 7.0e 2/3 


